МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ и СЕРТИФИКАЦИЯ

ЗАДАНИЕ 1

Определение размерности производной физической величины

Найдите размерность производной физической величины в системе СИ в виде

$$L^{\alpha} \cdot M^{\beta} \cdot T^{\gamma} \cdot I^{\delta} \cdot \theta^{\epsilon} \cdot J^{\eta} \cdot N^{\lambda}$$

где L, M, T, ... – размерности основных физических величин системы (табл. 1.1); $\alpha, \beta, \gamma, ...$ – показатели степени, в которую эти размерности возведены.

Объясните полученный результат, используя известные физические соотношения.

При написании итоговой формулы соблюдайте следующие правила:

- 1) размерности, имеющие нулевую степень, в формуле не указываются;
- 2) плоский угол (радиан) и телесный угол (стерадиан) в формуле не указываются, так как эти величины не имеют размерности;
- 3) последовательность размерностей в итоговой формуле должна быть такой же, как порядок строк в табл. 1.1.

Варианты задания

	0	10	20
0		Работа	Молярная масса
1	Энтропия системы	Сила излучения	Мощность
2	Теплоемкость	Звуковое давление	Магнитный поток
3	Электрическое напряжение	Светимость	Количество движения
4	Напряженность магнитного поля	Поверхностное натяжение жидкости	Электрическое сопротивление
5	Абсолютная диэлектрическая проницаемость	Поверхностная плотность электрического заряда	Акустическое сопротивление
6	Облученность	Скорость химической реакции	Момент инерции
7	Яркость	Интенсивность звука	Освещенность
8	Индуктивность	Молярный объем	Волновое число
9	Удельный объем	Электрическая проводимость	Световой поток

Элементы теории

Системой физических величин называется совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие определяются как функции этих независимых величин.

Основная физическая величина — это величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.

Производная физическая величина — это физическая величина, входящая в систему величин и определяемая через основные величины этой системы.

Формализованным различием физических величин является их размерность. В табл. 1.1 приведены основные физические величины системы СИ, их размерности и единицы измерения с указанием сокращенных обозначений.

Физическая	Размерность	Единица	Сокращенное обозначение единицы измерения	
величина	_	измерения	русское	международное
Длина	L	метр	M	m
Macca	M	килограмм	КГ	kg
Время	Т	секунда	С	S
Сила электрического тока	I	ампер	A	A
Термодинамическая температура	θ	кельвин	К	K
Сила света	J	кандела	кд	cd
Количество вещества	N	МОЛЬ	моль	mol

Таблица 1.1. Основные физические величины системы СИ

Длина — величина, характеризующая протяженность, удаленность и перемещение тел или их частей вдоль заданной линии. *Метр* есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 с.

Масса — величина, определяющая инертные и гравитационные свойства материальных объектов. С 2019 г. *килограмм* устанавливается фиксацией численного значения постоянной Планка равной в точности $6,62607015\cdot10^{-34}$.

Время — величина, характеризующая последовательную смену явлений и состояний материи, характеризующая длительность их бытия. *Секунда* есть время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Сила электрического тока – скалярная величина, равная производной по времени от электрического заряда, переносимого носителями заряда сквозь рассмат-

риваемую поверхность. *Ампер* есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную $2 \cdot 10^{-7}$ H.

Термодинамическая температура — температура, отсчитываемая по термодинамической шкале температур от абсолютного нуля. *Кельвин* — это единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды.

Кроме термодинамической температуры, допускается применять также температуру Цельсия. По размеру *градус Цельсия* равен кельвину.

Количество вещества — это величина, равная числу структурных элементов, содержащихся в теле (системе тел). *Моль* есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой $0{,}012$ кг.

Сила света — это величина, равная отношению светового потока, распространяющегося от источника излучения в рассматриваемом направлении внутри малого телесного угла к этому телесному углу. *Кандела* есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой $540 \cdot 10^{12} \, \Gamma$ ц, энергетическая сила света которого в этом направлении составляет $1/683 \, \mathrm{Bt/cp.}$

Пример выполнения задания

Размерность электрического сопротивления

По закону Джоуля-Ленца элементарное количество теплоты dQ, выделившееся в электрическом проводнике за элементарный промежуток времени dt (c),

$$dQ = I^2 R \cdot dt$$
, Дж,

где I – сила тока, A; R – электрическое сопротивление проводника, O_{M} .

Тогда

$$R = \frac{dQ}{I^2 dt}$$
,

то есть

$$[R] = O_M = \frac{\Pi_M}{A^2 \cdot c} = \Pi_M \cdot A^{-2} \cdot c^{-1}.$$
 (1.1)

Размерности силы тока (ампер) и времени (секунда) входят в число основных размерностей системы СИ. Остается найти размерность количества теплоты (или, что то же самое с точки зрения размерности, — энергии).

Кинетическая энергия твердого тела массой m (кг), движущегося со скоростью v (м/с),

$$E = \frac{mv^2}{2}$$
, Дж,

то есть

Дж =
$$\kappa \Gamma \cdot \left(\frac{M}{c}\right)^2 = \kappa \Gamma \cdot M^2 \cdot c^{-2}$$
. (1.2)

Подставляя (1.2) в (1.1), окончательно получаем

$$OM = \kappa \Gamma \cdot M^2 \cdot C^{-2} \cdot A^{-2} \cdot C^{-1} = \kappa \Gamma \cdot M^2 \cdot C^{-3} \cdot A^{-2}.$$

Omeem: $O_M = L^2 M T^{-3} I^{-2}$

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ и СЕРТИФИКАЦИЯ

ЗАДАНИЕ 2

Контроль размеров и определение годности детали

Рассчитайте предельные размеры отверстия и вала, сравните их с действительными размерами, измеренными контролером, и примите решение о годности детали в одном из трех вариантов:

- 1) деталь является годной;
- 2) деталь исправимый брак;
- 3) деталь окончательный брак.

Сделайте в удобном масштабе эскизы положения полей допусков отверстия и вала относительно нулевой линии, соответствующей номинальному диаметру соединения. Нанесите на эскизы действительные размеры поверхностей.

Заполните таблицу выполнения задания.

Варианты задания

	Размеры на	чертеже, мм	Действительны	е размеры, мм
	отверстия <i>D</i>	вала <i>d</i>	отверстия $D_{\scriptscriptstyle m J}$	вала $d_{\scriptscriptstyle m J}$
01	10 ^{+0,009}	$10^{-0,005}_{-0,014}$	10,010	9,990
02	$12^{+0,006}_{-0,012}$	$12^{+0,023}_{+0,012}$	11,800	12,020
03	$14^{+0,024}_{+0,006}$	14_0,011	14,015	13,900
04	8 ^{+0,015}	$8^{-0,025}_{-0,040}$	8,100	7,950
05	$28^{-0,014}_{-0,035}$	$28^{+0,01}_{-0,01}$	27,970	28,020
06	90 ^{+0,047} _{+0,012}	$90^{-0.036}_{-0.058}$	90,050	89,970
07	35 ^{+0,039}	$35^{-0,025}_{-0,050}$	35,040	34,950
08	$56^{+0,014}_{-0,032}$	$56^{-0,030}_{-0,060}$	56,020	55,970
09	42 ^{+0,100}	$42^{-0,120}_{-0,159}$	42,100	41,900
10	$20^{-0,025}_{-0,050}$	$20^{+0,035}_{+0,022}$	19,950	20,050
11	50 ^{+0,025}	$50^{-0,025}_{-0,041}$	50,030	49,960
12	$30^{+0,072}_{+0,020}$	30_0,021	30,050	29,820
13	25 ^{+0,084}	$25^{-0,020}_{-0,053}$	25,010	24,980

14	$75^{+0,076}_{+0,030}$	75 _{-0,046}	75,050	74,850
15	$120^{+0,140}$	$120^{+0,080}_{-0,080}$	120,100	120,150
16	$17^{+0,043}_{+0,016}$	$17^{-0,016}_{-0,043}$	17,030	17,040
17	$26^{+0,027}$	$26^{-0,040}_{-0,061}$	26,050	26,000
18	$22^{+0,053}_{+0,020}$	$22^{-0,020}_{-0,033}$	22,130	21,980
19	$105_{-0,059}^{-0,024}$	$105^{+0,045}_{+0,023}$	104,970	105,050
20	95 ^{+0,035}	$95^{-0,036}_{-0,071}$	95,000	94,900
21	$15^{+0,075}_{+0,032}$	$15^{-0,050}_{-0,089}$	15,100	14,950
22	$16^{+0,013}$	$16^{-0,005}_{-0,009}$	16,050	16,000
23	$140^{-0,020}_{-0,045}$	$140^{+0,040}_{+0,015}$	139,960	140,050
24	$38^{+0,025}$	$38^{-0,050}_{-0,075}$	38,040	37,950

Элементы теории

Размер – числовое значение линейной величины (диаметр, длина и т.д.) в выбранных единицах измерения.

 \mathcal{L} ействительный $(D_{\text{д}}, d_{\text{д}})$ — размер, полученный измерением с допустимой погрешностью, которая зависит от точности измерительного средства.

Hоминальный (D, d) — размер, от которого отсчитываются отклонения. Сопрягаемые поверхности имеют общий номинальный размер (D = d).

Предельные размеры — два размера, между которыми должен находиться или которым может быть равен действительный размер годной детали. Больший из двух предельных размеров называют наибольшим предельным размером ($D_{\rm HM}$, $d_{\rm HM}$), меньший — наименьшим предельным размером ($D_{\rm HM}$, $d_{\rm HM}$).

Предельное отклонение — разность между предельным и номинальным размерами (рис. 2.1). Различают верхние отклонения

$$ES = D_{H6} - D;$$
 (2.1)

$$es = d_{H\tilde{0}} - d \tag{2.2}$$

и нижние отклонения

$$EI = D_{\text{HM}} - D; \tag{2.3}$$

$$ei = d_{\text{HM}} - d. \tag{2.4}$$

Поле допуска — часть пространства, ограниченная верхним и нижним отклонениями.

Допуск – абсолютная величина разности предельных размеров (см. рис. 2.1):

$$TD = D_{\text{H}\tilde{0}} - D_{\text{HM}} = ES - EI;$$
 (2.5)

$$Td = d_{\text{H}\delta} - d_{\text{HM}} = es - ei.$$
 (2.6)

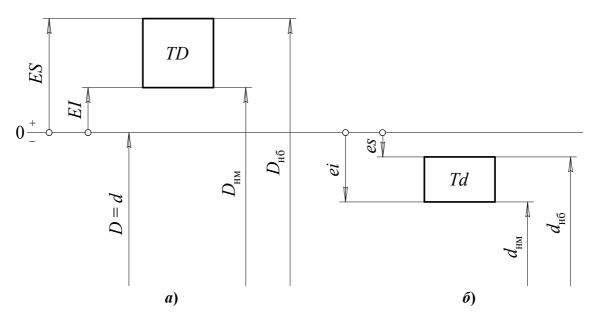


Рис. 2.1. Схемы расположения полей допусков отверстия (a) и вала (δ)

Пример выполнения задания

	Размеры на	чертеже	
	отверстия	вала	
Наименование параметра	Q		
Размер по заданию	$110^{+0,034}_{-0,020}$	110 _{-0,035}	
Номинальный размер	D = d = 110		
Верхнее предельное отклонение	ES = +0.034	es = 0	
Нижнее предельное отклонение	EI = -0.020	ei = -0,035	
Наибольший предельный размер	$D_{\rm H ar{0}} = 110,034$	$d_{\text{H}\circ} = 110,000$	
Наименьший предельный размер	$D_{\text{\tiny HM}} = 109,980$	$d_{\text{\tiny HM}} = 109,965$	
Допуск на размер	TD = 0.054	Td = 0.035	

Действительный размер (по заданию)	$D_{\rm m} = 110,02$	$d_{_{\rm I\! I}} = 109,95$	
Графическое изображение полей допусков	$D_{H_0} = 110,034$ $D = 110$ $D_{H_M} = 109,980$ $D_{A} = 110,02$	$d_{\text{Ho}} = d = 110 0$ $d_{\text{A}} = 109,95 $ $d_{\text{MM}} = 109,965$	
Заключение о годности детали	годная	брак окончательный	

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ и СЕРТИФИКАЦИЯ

ЗАДАНИЕ 3

Статистическое представление данных

В результате n измерений физической величины Q найдено ее среднее арифметическое значение \overline{Q} и рассчитан один из двух параметров: 1) среднеквадратическое отклонение результатов измерений σ или 2) оценка среднеквадратического отклонения результатов S_{σ} .

Найдите доверительный интервал значений величины Q с доверительной вероятностью P. Точность расчетов — до трех десятичных знаков.

Результат решения представьте в виде $Q_p \in [Q_{p \text{ min}}; Q_{p \text{ max}}].$

Варианты задания

	0	10	20
0		\overline{Q} = 3,15; P = 0,80; S_{σ} = 0,02; n = 20	\overline{Q} = 37,19; P = 0,98; σ = 1,12; n = 61
1	\overline{Q} = 5,28; P = 0,95; S_{σ} = 0,50; n = 10	\overline{Q} = 18,08; P = 0,99; σ = 0,95; n = 16	$\overline{Q} = 61.81; P = 0.90;$ $S_{\sigma} = 0.62; n = 41$
2	\overline{Q} = 14,34; P = 0,98; σ = 1,10; n = 29	\overline{Q} = 75,14; P = 0,95; S_{σ} = 1,17; n = 13	$\overline{Q} = 84,13; P = 0,80;$ $\sigma = 0,94; n = 9$
3	\overline{Q} = 63,45; P = 0,90; S_{σ} = 0,56; n = 20	\overline{Q} = 14,78; P = 0,95; σ = 1,61; n = 25	\overline{Q} = 37,21; P = 0,99; S_{σ} = 0,89; n = 27
4	\overline{Q} = 74,65; P = 0,98; σ = 2,35; n = 61	\overline{Q} = 79,82; P = 0,95; S_{σ} = 1,48; n = 25	\overline{Q} = 17,94; P = 0,90; σ = 1,38; n = 24
5	$\overline{Q} = 47,14; \ P = 0,99;$ $S_{\sigma} = 0,59; \ n = 16$	\overline{Q} = 87,43; P = 0,98; σ = 1,18; n = 27	\overline{Q} = 29,24; P = 0,95; S_{σ} = 0,52; n = 17
6	\overline{Q} = 19,25; P = 0,80; σ = 0,15; n = 5	\overline{Q} = 24,67; P = 0,98; S_{σ} = 0,57; n = 17	\overline{Q} = 54,47; P = 0,95; σ = 1,11; n = 23
7	\overline{Q} = 65,24; P = 0,90; S_{σ} = 1,45; n = 19	\overline{Q} = 98,20; P = 0,99; σ = 1,15; n = 13	\overline{Q} = 184,28; P = 0,98; S_{σ} = 4,15; n = 31
8	\overline{Q} = 63,51; P = 0,99; σ = 1,18; n = 29	\overline{Q} = 68,09; P = 0,95; S_{σ} = 1,25; n = 17	\overline{Q} = 9,78; P = 0,80; σ = 0,95; n = 21
9	\overline{Q} = 58,94; P = 0,90; S_{σ} = 1,76; n = 24	$\overline{Q} = 52,34; P = 0.98;$ $\sigma = 0.77; n = 30$	$\overline{Q} = 38,71; P = 0,99;$ $S_{\sigma} = 1,01; n = 8$

Элементы теории

Среднее арифметическое измеренной физической величины Q (наружного диаметра детали, ширины шпоночного паза, угла наклона образующей конической поверхности и т.д.)

$$\overline{Q} = \frac{1}{n} \sum_{i=1}^{n} Q_i , \qquad (3.1)$$

где n – число измерений (количество деталей в выборке); Q_i – результат отдельного измерения.

В случае нормального закона распределения совокупности данных дисперсия (разброс) величины Q характеризуется среднеквадратическим отклонением

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Q_i - \overline{Q})^2} . \tag{3.2}$$

В других случаях используется оценка среднеквадратического отклонения результатов измерений

$$S_{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Q_i - \overline{Q})^2} . \tag{3.3}$$

Из всего массива данных выделяют *доверительный интервал* Q_p – сравнительно узкий диапазон наиболее достоверных результатов измерения физической величины Q. Вероятность P попадания отдельного результата в доверительный интервал называют *доверительной вероятностью*.

Доверительный интервал симметричен относительно центра группирования результатов (среднего арифметического \overline{Q}) и описывается зависимостью

$$Q_p = \overline{Q} \pm \delta_p, \qquad (3.4)$$

где δ_p – граница доверительного интервала.

Если определено среднеквадратическое отклонение σ, то

$$\delta_p = \frac{\sigma}{\sqrt{n}} \cdot z_{\alpha}(P), \tag{3.5}$$

где $z_{\alpha}(P)$ – квантиль нормального распределения для вероятности P (табл. 3.1).

Таблица 3.1. Квантили нормального распределения (z-распределения)

P	0,80	0,90	0,95	0,98	0,99
$z_{\alpha}(P)$	1,282	1,645	1,960	2,326	2,576

Если определена оценка среднеквадратического отклонения S_{σ} , то конфигурация выражения для расчета δ_p зависит от числа измерений n:

- при n > 30

$$\delta_p = \frac{S_{\sigma}}{\sqrt{n}} \cdot z_{\alpha}(P); \tag{3.6}$$

- при n ≤ 30

$$\delta_p = \frac{S_{\sigma}}{\sqrt{n}} \cdot t(k, P), \qquad (3.7)$$

где t(k,P) — табличное значение квантиля распределения Стьюдента, определяемое в зависимости от числа степеней свободы k и доверительной вероятности P (табл. 3.2).

Число степеней свободы массива данных

$$k = n - 1. \tag{3.8}$$

Таблица 3.2. Квантили распределения Стьюдента (*t*-распределения)

,		P						
k	0,80	0,90	0,95	0,98	0,99			
1	3,078	6,314	12,706	31,821	63,657			
2	1,886	2,920	4,303	6,965	9,925			
3	1,638	2,353	3,182	4,541	5,841			
4	1,533	2,132	2,776	3,747	4,604			
5	1,476	2,015	2,571	3,365	4,032			
6	1,440	1,943	2,447	3,143	3,707			
7	1,415	1,895	2,365	2,998	3,499			
8	1,397	1,860	2,306	2,896	3,355			
9	1,383	1,833	2,262	2,821	3,250			
10	1,372	1,812	2,228	2,764	3,169			
11	1,363	1,796	2,201	2,718	3,106			
12	1,356	1,782	2,179	2,681	3,055			
13	1,350	1,771	2,160	2,650	3,012			
14	1,345	1,761	2,145	2,624	2,977			
15	1,341	1,753	2,131	2,602	2,947			
16	1,337	1,746	2,120	2,583	2,921			
17	1,333	1,740	2,110	2,567	2,898			
18	1,330	1,734	2,101	2,552	2,878			
19	1,328	1,729	2,093	2,539	2,861			
20	1,325	1,725	2,086	2,528	2,845			
21	1,323	1,721	2,080	2,518	2,831			
22	1,321	1,717	2,074	2,508	2,819			
23	1,319	1,714	2,069	2,500	2,807			
24	1,318	1,711	2,064	2,492	2,797			
25	1,316	1,708	2,060	2,485	2,787			

26	1,315	1,706	2,056	2,479	2,779
27	1,314	1,703	2,052	2,473	2,771
28	1,313	1,701	2,048	2,467	2,763
29	1,311	1,699	2,045	2,462	2,756
30	1,310	1,697	2,042	2,457	2,750
40	1,303	1,684	2,021	2,423	2,704
50	1,298	1,676	2,009	2,403	2,678
60	1,296	1,671	2,000	2,390	2,660

Пример выполнения задания

Исходные данные

Среднее арифметическое измеренной физической величины \overline{Q} = 29,24; оценка среднеквадратического отклонения физической величины S_{σ} = 0,52; число измерений n = 16; доверительная вероятность P = 0,95.

Решение

№ п/п	Рассчитываемая величина	Обозначение	Формула или номер формулы	Результат расчета
1	Число степеней свободы массива данных	k	(3.8)	15
2	Квантиль распределения Стьюдента	t(k, P)	табл. 3.2	2,131
3	Граница доверительного интервала	δ_p	(3.7)	0,277
5	Наименьшее доверительное значение физической величины	$Q_{p \; ext{min}}$	(3.4)	28,963
6	Наибольшее доверительное значение физической величины	$Q_{p m\ max}$	(3.7)	29,517

Omsem: $Q_p \in [28,963; 29,517]$