МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ и СЕРТИФИКАЦИЯ

ЗАД АНИЕ 4

Контроль размеров деталей штангенинструментами

Измерьте размеры детали в зонах и направлениях, показанных на рис. 4.1, с помощью штангенциркулей трёх типов.

Штангенциркулем типа ШЦ-I измерьте все диаметральные размеры и длину ступени l_1 , штангенциркулем типа ШЦ-II — диаметральные размеры и длину детали l_3 , штангенциркулем типа ШЦ-III — диаметральные размеры и длину ступени l_2 .

Рассчитайте средние арифметические значения измеренных величин. Заполните табл. 4.1.

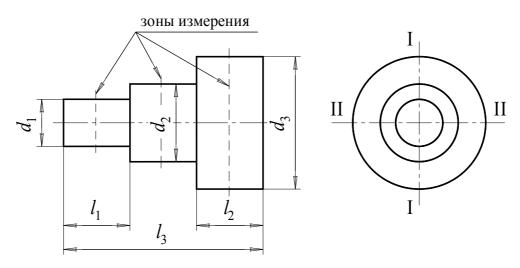


Рис. 4.1. Эскиз детали с зонами и направлениями измерения

Таблица 4.1. Результаты измерения размеров, мм

Обозначение размера	Тип штангенциркуля						
	ШЦ-І		ШЦ-П		ШЦ-Ш		ba ba
	Пределы измерения, мм						нее лческое размера
	Точность измерения, мм						Сре, омел
							Сред арифмет значение
	Направление измерения						a] al
	I–I	II–II	I–I	II–II	I–I	II–II	
d_1							
d_2							
d_3							
l_1			\mathbf{R}	\nearrow	\nearrow	\nearrow	
l_2						_	
l_3							

Элементы теории

Штангенциркуль – это универсальный ручной измерительный прибор, предназначенный для измерения наружных и внутренних линейных размеров деталей.

В соответствии с ГОСТ 166-89 в отечественном машиностроении используются штангенциркули трёх типов:

- 1) ШЦ-І двусторонний с глубиномером (рис. 4.2);
- 2) ШЦ-ІІ двусторонний с микрометрической подачей рамки (рис. 4.3);
- 3) ШЦ-ІІІ односторонний (рис. 4.4).

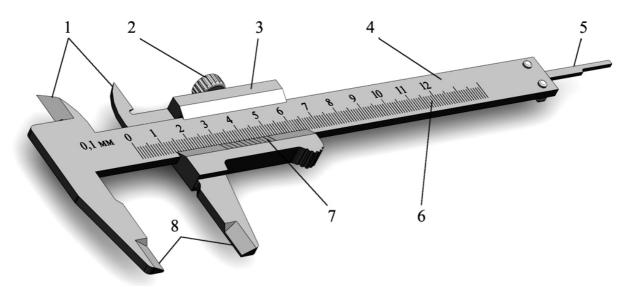


Рис. 4.2. Штангенциркуль ШЦ-I: 1 — губки для внутренних измерений; 2 — зажим рамки; 3 — рамка; 4 — штанга; 5 — линейка глубиномера; 6 — шкала штанги; 7 — нониус; 8 — губки для наружных измерений

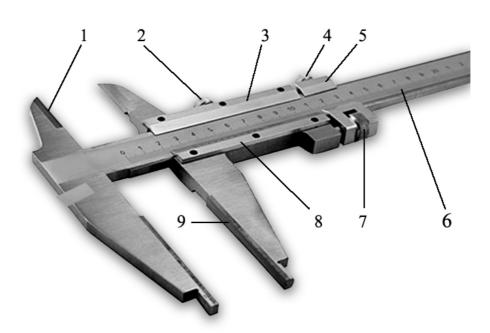


Рис. 4.3. Штангенциркуль ШЦ-II: 1 — неподвижные измерительные губки; 2 — зажим рамки; 3 — рамка; 4 — зажим рамки микрометрической подачи; 5 — рамка микрометрической подачи; 6 — штанга; 7 — гайка и винт микрометрической подачи; 8 — нониус; 9 — подвижные измерительные губки

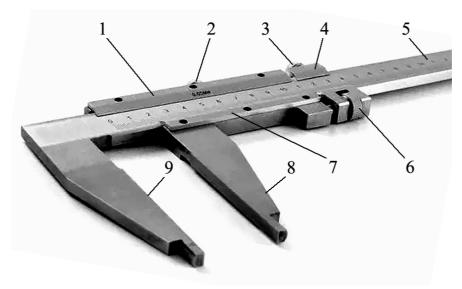


Рис. 4.4. Штангенциркуль ШЦ-III: 1 — рамка; 2 — зажим рамки; 3 — зажим рамки микрометрической подачи; 4 — рамка микрометрической подачи; 5 — штанга; 6 — гайка и винт микрометрической подачи; 7 — нониус; 8 — подвижная измерительная губка; 9 — неподвижная измерительная губка

Обязательными частями всех штангенциркулей являются штанга с основной шкалой и неподвижными губками, рамка с нониусом и подвижными губками и зажим рамки.

Основная шкала имеет цену деления 1 мм. По ней отсчитывается число целых миллиметров в измеряемом размере, которое определяется положением нулевого (крайнего левого) штриха нониуса (рис. 4.5, a). Нулевой штрих нониуса на рис. 4.5, a отмечен знаком \times .

Рис. 4.5. Отсчёт по шкалам штангенциркуля с точностью 0,1 мм: a – определение целого числа миллиметров (результат отсчёта – 34 мм); δ – определение десятых долей миллиметра (количество десятых долей – 7; общий результат измерения размера – 34,7 мм)

Точность измерения размеров штангенциркулями зависит от числа делений нониуса и рассчитывается по формуле

Точность измерения =
$$\frac{\text{Цена деления основной шкалы}}{\text{Число делений нониуса}}$$
. (4.1)

В соответствии с (4.1) точность измерения (цена деления нониуса) штангенциркулем с нониусом, имеющим 10 делений, составляет 0,1 мм, а с нониусом, имеющим 20 делений, -0,05 мм.

Для определения десятых (сотых) долей миллиметра (рис. 4.5, δ):

- 1) визуально определяют штрих нониуса, совпадающий с каким-либо штрихом основной шкалы (на рис. 4.5, δ этот штрих отмечен знаком \times);
- 2) подсчитывают число делений нониуса от нулевого до совпадающего штриха и умножают это число на цену деления нониуса.

Окончательный результат измерения равен сумме отсчётов по основной шкале и по нониусу.

Контрольные вопросы

- 1. Какова точность измерения размеров штангенциркулями, шкалы которых показаны на рис. 4.6?
 - 2. Прочитайте показания штангенциркулей на рис. 4.6.

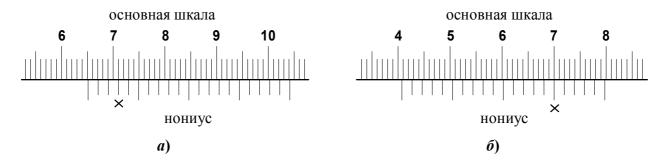


Рис. 4.6. Показания штангенциркулей при измерении размеров детали (штрихи нониусов, совпадающие со штрихами основных шкал, отмечены знаком ×)